
Journal o f  Statistical Physics, Vol. 65, Nos. 5/6, 1991 

Bimoleeular Annihilation Reactions: 
Immobile Reactants and Multipolar Interactions 

S. Luding, 1,3 H. Schn6rer,  l V. Kuzovkov, 2 and A. Blumen 1,3 

We study the A + B--+ 0 annihilation reaction via multipolar interactions 
w ~ r-" (r distance) in one and two dimensions. For equal numbers of immobile 
A and B particles we present computer simulations and numerical calculations 
of the decay. We find at large times that in d dimensions the particle concentra- 
tion follows n ~ t d/(2s d). 

KEY WORDS: A + B--, 0; reaction kinetics; multipolar interactions; power- 
law decay; immobile particles. 

Dur ing  the last few years b imolecu la r  react ions  between like (A + A - - +  
p roduc t s )  and  unlike par t ic les  (A + B --+ p roduc t s )  have been tho rough ly  
invest igated.  (lq6) In add i t i on  to works  which center  on diffusion-l imited 
react ions,  (1'2'4-7'9'1~ in several  instances also reac t ion  mechanisms  for 
i m m o b i l e  reac tan ts  ~3's'14 16) were analyzed.  

As microscopic  in te rac t ion  models  one has: 

(i) The so-cal led b lack-sphere  model ,  (sl where part icles  which come 
closer than  a given dis tance  r 0 react  ins tantaneous ly .  

(ii) Recombina t i on  th rough  tunnel ing;  here the reac t ion  p robab i l i t y  
wij for two part icles  Ai and  Bj depends  on their  mutua l  d is tance 
r o. = tri - rj[, fol lowing an exponent ia l  law (8' 11,14-16): 

wiy = w(r i y )  = Wo e x p ( -  r i y / ro )  (1) 
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(iii) Multipolar interactions, where the reaction probability follows a 
power law, (16) 

w o. = w(rifl = worij s (2) 

The difference between these cases is the range of the interaction, 
which is extremely short for the "black-sphere model and is (on a 
microscopic scale) longest for dipolar interactions, where s = 6. 

In this article we consider A + B --* 0 reactions with immobile  reactants 
A and B, which annihilate via multipolar interactions, following Eq. (2). 
We are interested in the temporal evolution of the density n(t)  of the par- 
ticles and also in the spatial correlations between particles, characterized 
by their correlation length ~(t). 

In former articles (11"14'15~ we investigated the A + B ~ 0  reaction 
mediated by exchange,  Eq. (1). For one,(H) two,(~4~ and also for noninteger 
dimensions (see ref. 15 for the case of a Sierpinski gasket whose fractal 
dimension is d =  1.585) we found that in the long-time domain n and ~ are 
related through 

n ( t ) ~ ( t )  -a/2 (3) 

where ~ is expressed by 

~(t) = r o ln(wo t) (4) 

which is the solution of the corresponding, implicit relation: 

w(~)t=l (5) 

Hence we get for exchange 

n(t)  ~ [ln(wot)]-d/2 (6) 

Let us now focus on the case of mult ipolar interactions. A naive extrapola- 
tion of Eqs. (3)-(5) in this case would suggest that 

~(t) = (Wot) '/~ (7) 

and furthermore, for the long-time domain, 

n(t)  ~ t a/~zs> (8) 

However, as we proceed to show, the decay law does not follow 
Eq. (8) for multipolar interactions: The time decay is indeed algebraic, but, 
as analytically established in ref. 16, the exponent in Eq. (8) is - d / ( 2 s -  d) 
rather than -d/(2s) ,  i.e., 

n ( t ) ~  t d/~2s-~) (9) 
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The analysis of ref. 16 focuses on the "optimized cell" method; here 
one looks for upper and lower bounds for n(t) as a function of the cell size 
R and then one optimizes the bounds with respect to the parameter R. As 
shown in ref. 16, the lower bound nL(R, t) tO n(t) has the structure 
[Eq. (13) of ref. 16] 

nL(R' t)= cl R-d/Z exp I--C2R-d/zt fr > R w(r) dV] (10) 

where c~ and c2 are constants, and the integration in the exponent extends 
from the lower cutoff at r = R to infinity. Maximizing Eq. (10) with respect 
to R leads for exchange to the well-established result, Eq. (6). On the other 
hand, for the multipolar interactions one obtains Eq. (9) instead of Eq. (8). 
Furthermore, the analysis of the upper bound nU(R, t) for n(t) results in 
[Eq. (17) of ref. 16] 

n~/2R d/2 
nU(R, t)= (11) no- (no- n~/2R -d/2) e x p [ -  tw( R ) nl/2R d/2 ] 

where n o is the particle density n ( t=0 ) .  Now maximizing n~:(R, t) with 
respect to R, one recovers again for exchange Eq. (6) and for multipolar 
interactions Eq. (9) as results. Since in both cases the lower and upper 
bounds to n(t) follow the same decay form, one infers that n(t) itself obeys 
Eq. (6) for exchange and Eq. (9) for multipolar interactions. 

Since the analysis of ref. 16 is quite subtle, and in order to be able to 
see the crossover behavior and to determine where the asymptotic forms set 
in, we decided to perform simulation calculations. 

In one dimension we used a chain of 10 6 lattice sites and in two 
dimensions we used a square lattice of 1000 x 1000 sites, both with periodic 
boundary conditions. At start, the A and B particles were distributed ran- 
domly with initial concentrations no = 0.01 each. At each reaction step the 
mutual annihilation was simulated as follows: First all reaction rates w e for 
all AB pairs present in the sample were determined. The time increment z 
for this particular step was taken to be the inverse of the sum R = Z i  Z j  w,j 
of the rates of all AB pairs still present: r = 1/R. Then from all these pairs, 
one pair was selected randomly, according to its reaction rate, and the 
corresponding A and B particles were irreversibly removed. 

The results for the one- and two-dimensional cases are presented in 
Figs. 1 and 2, respectively. In each case ten simulations with ~ifferent initial 
realizations were performed. In both cases we analyzed both dipolar and 
also quadrupolar interactions, and thus set the parameter s of Eq. (2) to 
s = 6 and also to s = 10. The full curves in Figs. 1 and 2 show the particle 
densities. The data.are presented in a log-log plot, so that a power-law time 
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Fig. 1. Decay of the reactant concentration n(t) in one dimension obtained from numerical 
simulations. Ten realizations of the process were considered with initially 10 4 particles of each 
kind, distributed on a chain of 10 6 lattice sites and periodic boundary conditions. The full 
curves give the simulation data for s = 6 and s = 10, as indicated; the dashed line gives the 
slope -d/(2s-d),  and the dotted line gives the slope -d/(2s), to be compared to Eqs. (9) 
and (8). 

dependence of the particle density n ( t )  ~ t ~ is visible as a straight line with 
slope c~. The slope for the asymptotic behavior of the particle density, 
n ( t )  ~ t d/(Zs d), Eq. (9), is indicated through a dashed line, while the slope 
resulting from Eq. (8), n ( t )  ~ t d/(2s), is given by a dotted line. 

The results of Figs. 1 and 2 now show the behavior of the particle den- 
sities n ( t )  over many orders of magnitude (10-30), from very short times 
to very long ones. Also, the crossover regime is quite evident. Furthermore, 
at long times we confirm the algebraic decay form. This form is indeed 
correct over many orders of magnitude in time. 

Comparing the slopes given by the approximate forms, it is clear in 
one and even more so in two dimensions that Eq. (9), given by the dashed 
lines, describes correctly the long-time regime of the particle density n( t ) .  

105 101~ 1015 

t 
Fig. 2. Same as Fig. 1, for d=2 and a square lattice with 1000 x 1000 sites and periodic 

boundary conditions. 
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Especially in two dimensions the failure of Eq. (8) is quite obvious; this 
failure is also conspicuous in one dimension, when one analyzes the 
numerical (and not only the graphically displayed) data. Thus, we fully 
confirm the findings of ref. 16. 

Finally we discuss an analytical method which allows us not only to 
determine the long-time behavior of n(l), but also to obtain numerically the 
decay in the whole time range. We extend here the method developed and 
tested for exchange interactions.(8' 1~. ~4. ~s) 

The starting point is provided by the following equations. (14) For the 
density n(t) one has 

~?n(t) = _n2(t) ?awo Y(r, t) r - " r  a- 1 dr (12) 
~t 

where ddr = lid rd- 1 dr denotes an infinitesimal volume element in d dimen- 
sions, and where 7d is the surface of a unit sphere in d dimensions (72 =2, 
72 = 2n, 73 = 4z). Here Y(r, t) denotes the A-B correlation function and 
X(r, t) the A-A (or B-B) correlation functions. 

They obey 

and 

Or(r, t) 
w(r) Y(r, t ) - 2 Y ( r ,  t )n ( t ) J [X]  (13) 

Ot 

~X(r, t) 
2X(r, t) n(t) J[ Y] (14) 

~t 

In Eqs. (13) and (14) J[H~ is a functional of H: 

J[H] --f w(r') Y(/, t)[H(~*, t ) -  ~] d~r ' (15) 

with 

r *  : =  ( r * (  ----- I t  - - r ' {  = ( r  2 q- r '2 - -  2rr' c o s  0) 1/2 (16) 

and 0 is the angle between r and r'. 
For the details and the approximations involved in deriving 

Eqs. (12)-(15) see ref. 14. 
The numerical solution of the equation system (12)-(14) is found by 

integration, beginning with the initial conditions n(0) = n o, X(r, 0) = l, and 
Y(r, 0) = 1 and then iterating. The procedure is similar to the one discussed 
in refs. 11, 14, and 15. This allows one to obtain the particle density n(t) 
and the correlation functions X(r, t) and Y(r, t) in the whole time domain. 
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Fig. 3. Decay of the reactant concentration n(t) (full lines) in one and two dimensions 
obtained from simulations; the results are compared to the numerical calculations (dashed 
lines). (a)d= 1 and s= 10, (b)d= 1 and s=6, (c) d=2 and s= 10, (d) d=2 and s=6. 

To exemplify the findings, we have plotted in Fig. 3 the particle den- 
sities which result from this method as dashed curves. The results are given 
for two sets of parameters (s = 6 and s = 10) for the dimensions d ~  1 and 
d =  2. For comparison we also display the simulation results, depicted as 
full curves. One can see that both methods agree very well for the major  
part  of the decay range. 

Note that the equation system (12)-(14) cannot be easily simplified. 
As an example, setting X(r, t ) =  1 leads to 

and 

n ( t ) ~  -d (17) 

~(t )~t  ~/" (18) 

i.e., it leads to the wrong results. 
In summary, we presented for the A + B ~ 0 reaction with immobile 

particles annihilating via multipolar interactions both computer simula- 
tions and numerical evaluations of an analytical approach for the decay 
law. Here we succeeded in obtaining the decay of the particle density in a 
time regime spanning some 10-30 orders of magnitude. 

The results of the simulations and of the numerical evaluations 
are in very good agreement. In the long-time regime they lead to the 
behavior n( t )~ t  -a/(2~-d), as predicted analytically by Burlatsky and 
Chernoutsan. (16) 
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